

(AUTONOMOUS)

B.Tech I Year II Semester Supplementary Examinations March-2021 ENGINEERING MECHANICS

(Electronics and Communication Engineering)

Time: 3 hours

PART-A

(Answer all the Questions $5 \times 2 = 10$ Marks)

1	a	Write down the Applications of Forces.	2M
	b	Define Kinetic Friction.	2M
	c	Explain about the applications of truss.	2M
	d	Define Moment of Inertia.	2M
	e	What are the types of vibrations?	2M

PART-B

(Answer all Five Units $5 \times 10 = 50$ Marks)

UNIT-I

- **2** a State and prove parallelogram law of forces.
 - **b** A system of forces is acting at the corners of a rectangular block as shown in Fig.1. Determine **5M** the magnitude and direction of the resultant force

3 State and prove Varignon's theorem.

UNIT-II

4 Find the least force required to drag a body of weight 'W' placed on a rough inclined plane having 10M inclination ' α ' to the horizontal. The force is applied to the body in such a way that it makes an angle ' Θ ' to the inclined plane and the body is on the point of motion up the plane.

OR

5 Ladder 5 meters long rests on a horizontal ground and leans against a smooth vertical wall at an angle 70° with the horizontal. The weight of the ladder is 900 N and acts at its middle. The ladder is at the point of sliding, when a man weighing 750N stands on a rung 1.5 meter from the bottom of the ladder. Calculate the coefficient of friction between the ladder and the floor.

UNIT-III

6 An I-section as shown in Fig.19 has the following dimensions in mm units: Bottom flange = 300×100 , Top flange = 150×50 , Web = 300×50 . Determine mathematically the position of center of gravity of the section.

OR

Page 1 of 2

Max. Marks: 60

 (\mathbf{y}_{i})

5M

10M

10M

Q.P. Code: 18CE0101

7 Find the center of gravity of the shaded area shown in below Fig. with reference to X-Y co-ordinate **10M** system.

8 A rectangular hole is made in a triangular section as shown in Fig. Determine the moment of inertia 10M of the section about X-X axis passing through its center of gravity and the base BC.

9 Find the moment of inertia about the centroidal X-X and Y-Y axes of the angle section shown in Fig. **10M**

- 10 Explain the procedure to find forces in members of truss by using method of sections.
- hest?

10M

OR

11 A king post truss of 8 m span is loaded as shown in Fig.34. Find the forces in each member of the truss and tabulate the results.

END